Report of the Ammonia Committee

Smalley Foundation Cooperative Meal Samples for the 1926-1927 Season

By H. C. MOORE, Chairman

N tables Nos. 1 to 4 following will appear a summary of the results of cooperative analytical work of the Smalley Foundation for oil and ammonia for the past year. This work was concluded with sample No. 30, reported on April 13, 1927. During this year 88 collaborators have participated, as compared to 81, 75 and 78, respectively, for the three preceding years.

Table No. 1 gives the standing of the 43 collaborators who reported oil determinations on all of the samples. Last year only 35 collaborators reported on all of the thirty samples, as compared to 29 and 36, respectively, in the two previous years.

In table No. 2 appears the corresponding standing of the 53 collaborators who reported ammonia results on all of the samples. Last year only 52 collaborators reported on all of the samples, as compared to 42 and 50 in the two preceding years.

Table No. 3 gives the combined laboratory average standing for both oil and ammonia for the 43 collaborators who reported both oil and ammonia on all of the samples. Last year only 34 collaborators reported oil and ammonia results on all 30 samples, as compared to 28 and 36 for the two preceding years.

Table No. 4 gives the summary of the results of other collaborators who have failed to report on all samples, but whose results deserve recognition. The prize awards for the best work done on the thirty samples are the same as for the past several years, and as published in the

TABLE I—Oil Results, All Samples (Average analysis, Oil 7.63)

(Average analysis, Oil 1.03)					
	An.	Points	Av. per	Effi-	
Rank	No.	off	sample	ciency	
1	52	28	.0093	99.878	
2	33	34	.0113	99.8 52	
3	57	39	.0130	99.830	
4	24	41	.0137	99.818	
5	78	45	.0150	99.803	
6	45	53	.0177	99.768	
7	20	54	.0180	99.764	
8	21	55	.0183	99.760	
9	23	60	.0200	99.738	
10 {	74	61	.0203	99.734	
- (73	62	.0207	99.729	
12	77	62	.0207	99.729	
13	49	74	.0247	99.676	
14	22	82	.0273	99.642	
15	2	92	.0307	99.598	
16	8	99	.0330	99.567	
17	4	102	.0340	99.554	
18	62	112	.0373	99.511	
19	43	117	.0390	99.489	
20	42	131	.0437	99.427	
21	46	136	.0453	99.406	
22	25	140	.0467	99.388	
23	71	149	.0497	99.349	
24	70	154	.0513	99.328	
25	39	167	.0557	99.270	
26	37	168	.0560	99.266	
27	67	171	.0570	99.253	
28	29	178	.0593	99.224	
2 9	6	184	.0613	99.198	
30	55	185	.0617	99.191	
31	50	194	.0647	99.152	
32	3	201	.0670	99.122	
33	61	212	.0707	99.073	
34 {	40	257	.0857	98.877	
ι	69	257	.0857	98.877	
36	41	285	.0950	98.755	
37	76	388	.1293	98.305	
38	7	411	.1370	98.204	
39	54	446	.1487	98.051	
40	82	473	.1577	97.933	
41	72	557	.1857	97.566	
42	58	608	.2027	97.343	
43	63	677	.2257	97.042	
					

TABLE II—Ammonia Results			TABLE II—Continued						
	(A wara	ao ana	lysis 8.16	Α.	56	51	126	.0420	99.485
	(Avera	ge ana	lysis 0.10	,	57	71	127	.0423	99.482
	An.	Points	Av. per	Effi-	58	34	129	.0430	99.470
Rank		off	sample	ciency	59	46	130	.0433	99.469
1	31	1	.0003	99.996	60	36	134	.0447	99.452
$\frac{1}{2}$	59	$\bar{3}$.0010	99.988	61	58	135	.0450	99.449 99.428
_ [12	6	.0020	99.975	$\begin{array}{c} 62 \\ 63 \end{array}$	65 30	$\begin{array}{c} 140 \\ 168 \end{array}$	0.0467 0.0560	99.314
3 $\{$	45	6	.0020	99.975	64	81	265	.0883	98.918
Į	10	6	.0020	99.975	65	63	$\frac{200}{277}$.0923	98 869
6	77	10	.0033	99.960					
7	57	11	.0037	99.955	MADIE		Oil on	d Ama	nonia Re-
8	41	12	.0040	$99.951 \\ 99.947$	TABLE		s, All S		
9 }	$\frac{62}{33}$	$\begin{array}{c} 13 \\ 13 \end{array}$.0043 $.0043$	99.947		Suit	•	_	
11	$\frac{55}{74}$	14	.0043	99.942	Rank		Analyst	;	Efficiency
. (78	15	.0050	99.939	1		33		$99.899\frac{1}{2}$
12 }	$\overset{\circ}{2}$	15	.0050	99.939	2		57		$99.892\frac{1}{2}$
, ,	$1\overline{9}$	18	.0060	99.926	3		52		99.892
14	23	18	.0060	99.926	4		45		$99.871\frac{1}{2}$
16	75	19	.0063	99.923	5		78		99.871
17	73	21	.0070	99.914					
. [52	23	.0077	99.906	6		24		99.858
18 {	55	23	.0077	99.906	7		77		99.844
}	69	23	.0077	99.906	8		74		99.838
21 }	24	25	.0083	99.898 99.898	9		23		99.832
23	$\frac{43}{42}$	$\begin{array}{c} 25 \\ 27 \end{array}$	0083 0090	99.890	10		73		99.822
$\frac{25}{24}$	7	29	.0097	99.881	11		21		99.802
$\frac{24}{25}$	83	$\frac{23}{34}$.0113	99.862	12		20		99.782
26	25	35	.0117	99.857					
$\frac{27}{27}$	40	37	.0123	99.849	13		2		99.719
(21	38	.0127	99.844	14		62		99.729
28 {	61	38	.0127	99.844	15		49		99.722
30	8	39	.0130	99.841	16		8		99.704
31	72	40	.0133	99.837	17		$\begin{array}{c} 43 \\ 4 \end{array}$		$99.694 \\ 99.671$
32	67	41	.0137	99.832	18 19		$4\overset{4}{2}$		99.659
33	$\frac{32}{27}$	$\begin{array}{c} 42 \\ 43 \end{array}$	$.0140 \\ .0143$	99.828 99.825	20		$\frac{42}{22}$		99.648
$\frac{34}{35}$	$\frac{27}{37}$	$\frac{45}{45}$.0145	99.816	$\tilde{2}_{1}^{0}$		$\frac{25}{25}$		99.618
(20	49	.0163	99.800	$\overline{22}$		-6		99.586
36 }	44	$\frac{49}{49}$.0163	99.800	$\overline{23}$		55		99.549
}	4	$\tilde{52}$.0173	99.788	24		67		99.543
38 {	49	52	.0173	99.788	25		37		99.541
1	76	52	.0173	99.788	26		39		99.508
41	11	53	.0177	99.783	27		70		99.488
42	39	62	.0207	99.746	28		61 46		$99.459 \\ 99.437$
43	16	67	.0223	99.727	$\begin{array}{c} 29 \\ 30 \end{array}$		$\begin{array}{c} 40 \\ 71 \end{array}$		99.416
44	$\frac{54}{2}$	69	.0230	99.718	30 31		17		99.408
45 46	$\frac{3}{6}$	$\begin{array}{c} 75 \\ 80 \end{array}$	$.0250 \\ .0267$	$99.694 \\ 99.673$	32.		50		99.405
47	50	84	.0280	99.657	33		69		99.392
(22	85	.0283	99.653	34		40		99.363
48 {	66	85	.0283	99.653	35		29		99.361
50	$\ddot{70}$	86	.0287	99.648	36		41		99.353
51	17	87	.0290	99.645	37		76		99.047
52	26	88	.0293	99.641	38		7		99.042
53	82	106	.0353	99.567	39		$\begin{array}{c} 54 \\ 82 \end{array}$		98.885 98.750
54	64	118	.0393	99.518	$\begin{array}{c} 40 \\ 41 \end{array}$		$\frac{62}{72}$		98.702
55	29	123	,0410	99.498	42		58		98.396
(0	Continued	in the	next col	umn)	43		63		97.956

Cotton Oil Press in 1923. The winners of these awards for the past year are as follows:

The laboratory cup for the highest efficiency in the determination of both oil and ammonia is awarded to No. 33, Dr. W. F. Hand. State Chemist, A & M College, Mississippi, whose average is 99.899½ per cent. The certificate for second place is awarded to No. 57, A. W. Horrell. Jackson, Mississippi, whose average efficiency is 99.892½ per cent. The corresponding percentages for last year were 99.901 and 99.869, respectively, and for the previous year 99.895 and 99.-892.

It should be noted here again that the laboratory cup originally provided for this purpose was awarded finally to the Battle Laboratory, Montgomery. Alabama, having become their permanent property after being won on three different occasions. The cup awarded this year, to be retained by Dr. Hand for one year, is the one which has been provided and offered to the Smalley Foundation by Dr. H. B. Battle.

The certificate for the highest efficiency in the determination of oil is awarded to No. 52, George W. Gooch Laboratories, Los Angeles, California, whose average is 99.878 per cent, and the certificate for second place is awarded to No. 33, Dr. W. F. Hand, State Chemist, A & M College, Mississippi, whose average is 99.852 per cent. The corresponding percentages for last year were 99.871 and 99.786 respectively and for the preceding year 99.880 and 99.848.

The certificate for the highest efficiency in the determination of ammonia is awarded to No. 31, Dr. E. M. Bailey, State Chemist, New Haven, Connecticut, whose aver-

TABLE IV—Results of Other Collaborators Whose Results Deserve Recognition.

	No. sample	es Poi	Points off		
Analyst	reported o	n Oil	Amm.		
5	29	(28S)192	65		
9	28	(27S)134	39		
14	29	,	38		
15	28		85		
16	29		152		
18	29		116		
28	23		182		
35	29	639	171		
38	29	98	61		
68	29	214	433		
80	23		61		
81	26	428	*		
84	29	341	93		
85	25	235	12		

^{* 30} samples; reported in Table 2.

age is 99.996 per cent, and the certificate for second place is awarded to No. 59, F. B. Carpenter, Virginia-Carolina Chemical Corporation, Richmond, Virginia, whose average is 99.988 per cent. The corresponding percentages for last year were 99.966 for both first and second place, and for the previous year, 99.956 and 99.942.

In accordance with the resolution adopted by the American Oil Chemists' Society, the identity of the other collaborators will not be disclosed.

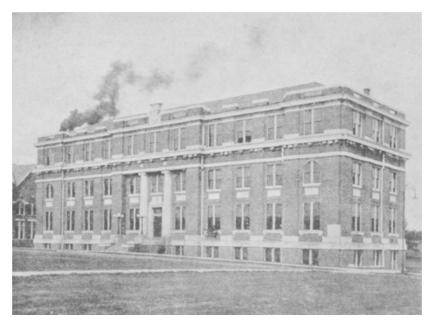
It will be observed from the foregoing that the percentage efficiency for the oil work and also for the ammonia work is slightly higher than for last year, although the highest average for both oil and ammonia is slightly under last year's result.

Special attention is called to the very high efficiency in ammonia for No. 31, Dr. E. M. Bailey. Dr. Bailey's record is one which will probably not soon be surpassed. Considering that a variation of two points, that is, .02 per cent is allowed each collaborator on his

Smalley Foundation Prize Winners

A. W. Horrell

F. B. Carpenter


results as compared with the accepted average on each sample, on only one of the thirty samples did Dr. Bailey's results differ from the average. On the first sample reported his results missed the average three points (.03 per cent). His record is the highest so far The record of F. B. established. Carpenter is not far behind, likewise the records of analysts 12, 45 and 10. The efficiencies of these four collaborators are higher than those of the highest in either of the two preceding years.

The method for determining the standing of the various collaborators and their per cent efficiency is the same as has been used before, and is fully described in the January, 1923, issue of the *Cotton Oil Press*, VI, No. 9, Page 33.

It is hoped that there is no mistake in the results appearing in tables 1 to 4 inclusive. These have been double checked, and yet as there are so many figures involved, there may be some slight error.

The Chairman wishes to thank the collaborators for hearty cooperation in this work during the past year. There have been very few complaints on the samples, probably fewer than in former years, and the Chairman feels that a vote of thanks and appreciation is due R. F. Monsalvatge for his painstaking care in the preparation and handling of the samples. The Chairman further wishes to take this opportunity of recommending that this important work be again entrusted to Mr. Monsalvatge next year.

By way of confirming the Chairman's opinion that either the samples during the past year have been more uniform than heretofore

The Mississippi State Chemical Laboratory, another prize winner

or else the collaborators' work in general is improving, attention is called to the following:

Last year the average of all the accepted results for oil was 5.97 per cent; this year 7.63 per cent. The average number of points off in oil for the ten highest last year was 49.9; this year 46.9. The average efficiency in oil for the ten highest last year was 99.721; this year 99.795.

Likewise for the ammonia results, the average of the accepted values for last year was 6.79 per cent; this year 8.16 per cent. The average number of points off for the ten highest last year was 12.5; this year 8.1. The average efficiency for the ten highest last year was 99.939; this year 99.967.

It will therefore be noted that the average of both the oil and ammonia content of the samples this year is higher than last year, yet the average of the number of points off is less and the efficiency higher. It will be noted from an examination of tables 1 and 2 in the report for this year, as compared to the report for last year, that not only is this true for the ten highest, but it is true for the entire list. This would seem to be good evidence of even greater uniformity in the samples this year than last.

An opportunity has been afforded all collaborators to be advised by wire collect, in case their reports are not received in time each week, or in case there seems to be a typographical error in their reports. Thirty-two of the collaborators have taken advantage of this offer, while one or two of the others have been disappointed in finding their results omitted from some report. According to our rule, only results which are received up to and including Tuesday of each week are to be accepted; however

(Continued on page 204)